Algebra 1.1, 1.2, 2.1-Expressions and Real Numbers 2015-Key.notebook September 15, 2015

How are be Operations:	asic operations applied to differer Fractions/Mixed Numbers	nt forms of numbers? Decimals
+ or -	Common Denominator	Place Value
X	Improper Fraction	Decimal Digits
÷	1 Improper Frankism (2) Reciprocal/Multiplicative Inverse	Whole # Divisor

Evaluate

Simplify

Perform all of the operations!

Equation

VS

Expression

Equations can be solved*.

There must be an equal sign present to have an equation.

☆ Expressions can be simplified*
 or evaluated for a specific
 value of the variable(s).
 Do not use equal signs.

3

Base

How do we read it?

How do we evaluate it?

• multiply "a" by itself "x" times

3(3)

 $E \times 2: 2^3 \cdot 5^2$

2(2)(2) · (5)(5)

8 . 25

How are multiplication and division written in Algebraic expressions?		
Multiplication	Division	
* 6(5) = 5(6) 6 x 5 Commutative Property of White * 6 [5] * 6 [X] Exponent S * 4! 4:3.2:1 Factorial (!)	256 6-2 62 4	

Order of Operations

6

- \Rightarrow
- 1. Perform any operations within grouping symbols.
 - 2. Evaluate exponents.
 - 3. Multiply or divide from left to right.
 - 4. Add or subtract from left to right.

Evaluate each expression. Show all steps and circle your final answer.

1.
$$50-25+5(3)$$

$$50-25+15$$

$$35+15$$

$$40$$

2.
$$3(18-7(2))^2$$
 $3(18-14)^2$
 $3(4)^2$
 $3(16)$
 487

Evaluate each expression. Show all steps and circle your final answer.

4.
$$\frac{8(6)-4(2.5)}{[(3)(2)]^2}$$

48 - 10

(6)

38

36

19

18

Evaluate each expression for the given value of the variable.

5.
$$2x - y^3$$
 $x = 15, y = 3$

$$2(15) - (3)^3$$

6.
$$\frac{m(n^2 - mn)}{(m+n)^2}$$
 $m = 2, n = 3$

$$\frac{2(3^2 - (3)(3))}{(2+3)^2}$$

$$\frac{2(9-2(3))}{(5)^3}$$

$$\frac{(9-6)}{25}$$

What are the Grouping Symbols?

- P Parenthesis
- B Brackets

F/D Fraction/Division Bar

- A Absolute Value
- R Radical Symbol
- ! Factorial

$$\sqrt{9} = 3$$
 $3\sqrt{1} = 3$

What are the different types of numbers?

Counting Numbers: {1, 2, 3, 4, 5, 6, ...}

also known as the natural numbers

Whole Numbers: {0, 1, 2, 3, 4, 5, ...}

the counting numbers and zero

Integers: {...-3, -2, -1, 0, 1, 2, 3...}

the whole numbers and their opposites

Rational Numbers: numbers that can be expressed as a fraction of integers - integers are

included in this set $\sqrt{9} = 3$

Irrational Numbers: numbers that cannot be expressed as a fraction of integers

7 58

Real Numbers: all of the rational and irrational numbers

• Imaginary Numbers: $i = \sqrt{-1}$

Is a repeating decimal a rational or an irrational number?

Let
$$x = 0.3 \implies 10 = 3.3$$
 $10x = 3.3$
 $-1 = 3$
 $9x = 3$
 $9 = 9$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$
 $1 = 3$

Repeating decimals are RATIONAL numbers!

Absolute Value of a number: the distance between the number and zero (the number of units away from zero)

Absolute value is a grouping symbol!

This forces you to evaluate inside the bars first.

Evaluate each expression.

Assignment #4: p. 10-11 #3-31odd

p. 68 #17 and 22 (graph), 43-49 odd

Instructions for all assignments:

- 1. Put your name, date, and period in the upper right hand corner of your paper.
- 2. Put the assignment number as well as the page number and problem numbers on the first line on the left.
- 3. Copy all original problems!
- 4. Show steps vertically!
- 5. Circle final answers!

